
1.  Introduction
Early studies (e.g., Atlas & Chmela, 1957; Marshall & Palmer, 1948) showed that there are statistical differ-
ences in the characteristics of the raindrop size distribution (RSD) between different systems. For example, 
RSDs in tropical convection are characterized by narrow spectra and small means in diameter yet RSDs in conti-
nental convection tend to have wider spectra and larger mean diameters. However, studies (Donnadieu, 1982; 
Ulbrich, 1983; Waldvogel, 1974) also pointed out that the differences in RSDs between different systems can 
be as large as those found from moment to moment within a given rainfall type. Hurricanes, in comparison with 
other severe weather systems, have a much longer life cycle and travel across much greater zonal and meridional 
extent. These characteristics imply that uncertainties and variabilities of RSDs are particularly high in hurricanes.

RSDs have received wide attention in meteorology for decades. One of the most important applications of RSDs 
is using Z-R relationship to estimate rainfall rate. Z and R are calculated as in Equations 1 and 2.
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𝐴𝐴 𝐴𝐴𝑖𝑖 in Equations 1 and 2 represent the diameter in the designated size bin. 𝐴𝐴 𝐴𝐴 (𝐷𝐷𝑖𝑖) refers to the number of rain-
drops in the size bin. 𝐴𝐴 𝐴𝐴𝑇𝑇 (𝐷𝐷𝑖𝑖) in Equation 2 represents the terminal velocity as the function of raindrop size. A 
statistical Z-R relationship can thus be developed from the observed RSDs based on Equations 1 and 2. Battan 
(1973) has tabulated over 60 Z-R relationships based on measurements taken around the world. There are many 
more Z-R relationships documented in the literature since Battan (1973). However, only a few Z-R relations were 
developed from observations collected in hurricanes. Jorgensen and Willis (1982) (JW1982 hereafter) obtained 
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rainfall rate (RR) based on its power-law relationships with radar reflectivity. Different relationships have been 
obtained for different weather scenarios. Hurricanes, in comparison with other severe weather systems, have 
a much longer life cycle and travel across much greater zonal and meridional extent. Therefore, in order to 
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Z = 300 R 1.35 using the Particle Measurement Systems 2D-P (precipitation) probe data collected from four flights 
into three hurricanes. Two other Z-R relationships, Z = 287 R 1.27 and Z = 301 R 1.38 for eyewall and rainbands 
respectively, were further obtained from two flights through Hurricane Frederic. Chang et al. (2009) presented 
Z = 207 R 1.45 using RSDs collected by 2D video disdrometer and C-band polarimetric radar from 13 western 
Pacific typhoons that made landfall in Taiwan. Wen et al. (2018) found that Z = 147 R 1.38 using RSDs collected by 
2D video disdrometer from 7 typhoons that made landfall in China. These studies show that both the coefficient A 
and the exponent b in the Z-R relationship formulation vary significantly for tropical cyclone systems. In particu-
lar, Ulbrich and Lee (2002) studied rainfall characteristics associated with the remnants of Tropical Storm Helene 
using RSD data obtained from a standard RD69 Joss-Waldvogel (JW) raindrop disdrometer. They found that there 
were pronounced variations in the Z-R relationship from day-to-day and within a day that would limit the accu-
racy of the estimated rainfall from radar measurement. The pronounced differences in Z-R relations pose a great 
challenge for using a power-law Z-R relationship with a constant coefficient and exponent to estimate rainfall rate.

In this study, we use RSD data collected by the Droplet Measurement Technologies precipitation imaging probe 
(PIP) from 17 flights through 6 hurricanes during National Oceanic and Atmospheric Administration's hurricane 
field program in 2020 to study Z-R relationship in hurricanes. The remainder of the paper is organized as follows. 
In Section 2, the data processing and overall statistics of the data are provided; in Section 3, Z-R relationships from 
this study are presented; in Section 4, the comparison with early Z-R relationships in the literature are discussed; in 
Section 5, a machine learning model is employed to improve Z-R relationship. A conclusion is given in Section 6.

2.  Data
The RSD observations used in this study are from 17 flights into 6 hurricanes in 2020: Four flights from Hanna, 
three flights from Isaias, two flights from Laura, three flights from Sally, one flight from Zeta, and foure flights 
from Delta. Observations taken outside the 500-km radius of the storm center are excluded from this study. Twenty 
samples with liquid water content (LWC) >12 g m −3 are also excluded. The number of total samples used in this 
study is 18,076.

Figure 1 presents the overall distribution of directly measured variables (e.g., wind speed, vertical wind, and 
altitude) and integral rain variables (e.g., LWC, reflectivity, rainfall rate, mass-weighted-diameter 𝐴𝐴 𝐴𝐴𝑚𝑚 , and total 

Figure 1.  Histogram of (a) altitude, (b) wind speed, (c) vertical wind, (d) liquid water content in log scale, (e) reflectivity, (f) rainfall rate (RR) in log scale, 
(g) mass-weighted-diameter 𝐴𝐴 𝐴𝐴𝑚𝑚 , and (h) total number concentration 𝐴𝐴 𝐴𝐴𝑡𝑡 in log scale for the 18,076 samples in this study. The red curve in each plot denotes the 
corresponding cumulative distribution function.
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number concentration 𝐴𝐴 𝐴𝐴𝑡𝑡 ) calculated from the observed RSDs. The purpose of this figure is to provide references 
to what the distribution of RSDs and the integrated rain variables look like in the sample space. Even though the 
sample size is significantly larger than many studies that have focused on RSDs in hurricanes, it still might not 
be representative of all hurricane RSDs. The differences in the RSDs from one storm to another storm, from one 
flight to another flight, could exist.

As shown in Figure 1a, ∼50% of observations are taken between 3 and 3.5-km altitude, where eyewall pene-
trations typically occur. About 85% of the observations occur at wind speeds less than 25  m  s −1 and 82% 
percent of the data have vertical wind magnitudes less than 1 m s −1. As pointed out in Black and Hallett (2012), 
strong-convection regions tend to be underrepresented in newer data (2005 and later) since flights specifically 
avoid penetrations of high-reflectivity areas. About 95% of samples have LWC less than 1 g m −3 85% of samples 
have reflectivity less than 40 dBZ. About 87% of samples have rainfall rates less than 10 mm hr-1 Figures 1g 
and 1h show mass-weighted-diameter 𝐴𝐴 𝐴𝐴𝑚𝑚 , and total number concentration 𝐴𝐴 𝐴𝐴𝑡𝑡 . The Dm, which is calculated as the 
fourth-moment of RSD divided by the third-moment, has been widely used in RSD studies (e.g., Ulbrich, 1983) 
because of its reduced sensitivity to sampling limitations for small drop sizes, a problem for many instruments 
that measure drop size distributions (Steiner et  al., 2004). Around 90% of samples have 𝐴𝐴 𝐴𝐴𝑚𝑚 less than 2 mm. 
Figure 1 shows that around 75% of samples have Nt less than 1,000 drops m −3 and around 99% less than 10,000 
drops m −3.

The procedure of data processing can be found in the Supporting Information S1.

3.  Z-R Relationships in Hurricanes
Figure 2 shows the scatter plots of Z-R in log scale for four precipitation groups: stratiform precipitation at H 
(height) > 3-km altitude, stratiform precipitation at H 𝐴𝐴 ≤  3 km, convective precipitation at H > 3 km, and convec-
tive precipitation at H 𝐴𝐴 ≤  3 km. The threshold values we adopt to stratify stratiform precipitation and convective 

Figure 2.  Z-R plots for (a) convective precipitation for samples collected at altitudes >3 km, and (b) stratiform precipitation for sample altitudes >3 km. (c and d) 
are the same as (a and b) but for samples altitudes 𝐴𝐴 ≤ 3 km. See text for the definition of convective and stratiform precipitation. The size of data points is proportional 
to Dm and the color is denoted by the Nt in the log scale. Line of best-fit derived from a linear least-squares method is drawn through the individual points and the 
corresponding equation is denoted in the top left of each plot. The number of samples (Nsamples) is shown below the equation. The mean and median Dm and Nt for 
40 dBZ are provided at the bottom right of each plot. The light gray lines above and below the best-fit line indicates the upper/left and lower/right boundary.
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precipitation are based on Atlas et  al.  (2000), who used draft magnitude of 𝐴𝐴 ≈ 1m s
−1 to separate  convective 

precipitation and stratiform precipitation for data obtained in Tropical Ocean-Global Atmosphere Coupled 
Ocean-Atmosphere Response Experiment between 3.0 and 3.5  km altitude. There are two main differences 
between samples in our study and samples in Atlas et al. (2000). First, our samples are taken in hurricane envi-
ronment. Second, the altitudes of our samples range from near surface to 7 km, although about half of the samples 
are taken near 3-km flight level. Given the wide range of altitudes where the samples are taken and strong vertical 
gradient of vertical motion, especially at low levels, in hurricane environment, we modified the 𝐴𝐴 1m s

−1 threshold 
value used in Atlas et al. (2000) to reflect that the magnitude of vertical motion tends to be weaker near surface 
and grows upward. Instead of using the same threshold for all altitudes, 0.3, 0.5, 0.7, 0.9, and 1 m s −1 are used 
for H < 1 km, 1 km 𝐴𝐴 ≤  H < 2 km, 2 km 𝐴𝐴 ≤  H < 3 km, 3 km 𝐴𝐴 ≤  H < 4 km, and H > 4 km respectively because |w| 
is small near the surface and at the low levels. The samples with |w| less than the threshold value are flagged as 
stratiform precipitation. Otherwise, they are flagged as convective precipitation. All the integral variables in this 
plot, Z, R, Dm, and Nt, are calculated directly from the observed RSDs. The most distinctive feature in all four 
groups is that the scatter of the Z-R distribution increases as reflectivity and rainfall rate increase up to 48 dBZ 
or 25 mm hr −1, after which it decreases rapidly (slowly) along the upper/left boundary (lower/right boundary) of 
the scatter, converging rapidly (slowly) toward the fitted line. The scatter is indicative of the impact of RSDs on 
the Z-R relationships. As seen in Equation 1, Z is proportional to the number concentration and the sixth power 
of raindrop size. R (see Equation 2) is closely related to the number concentration and the third power of raindrop 
size. If the raindrop sizes are reduced by half, the number concentration needs to increase by a factor of 64 in 
order to achieve the same Z. The dramatic increase in the number concentration will lead to an increase in R by 
a factor of almost 8.

The widening of the spectrum in all four groups in Figure 2 indicates the growth phase of the precipitation, and 
shows the need for improving the rainfall estimations beyond a Z-R relationship with a constant coefficient and 
exponent. The fitted Z-R relationship can underestimate heavy rainfall by as much as 40% and overestimate 
light rainfall a few hundred percent when Z is between 30 and 50 dBZ. The narrowing of the spectrum when Z 
is >48 dBZ might reflect that RSDs are approaching equilibrium. Earlier studies (Hu & Srivastava, 1995; List 
et al., 1987; Srivastava, 1971; Willis, 1984) showed that RSDs reach equilibrium when raindrop coalescence and 
breakup are in balance, assuming no gain or loss of raindrops to other processes. The time required for reaching 
RSD equilibrium is shorter for greater R, because of the greater LWC and respectively shorter time between 
raindrop interactions. Rosenfeld and Ulbrich (2003) noted that the four Z-R relationships depicted by Atlas and 
Chmela (1957) when extended to large rainfall rates, tend to converge to the RSD equilibrium. After the RSDs 
reach equilibrium, the increase of R is due to the increase of number concentrations. Many other studies (e.g., 
Chang et al., 2009; Wen et al., 2018) also confirmed this early finding. The upper/left boundary (lower/right 
boundary) of the scatter converging rapidly (slowly) toward the fitted line in Figure 2 indicates that the breakup 
process dominates over the coalescence process during the evolution toward the equilibrium in this period and 
the mean drops sizes decrease slightly. Willis (1984) also showed the balance between coalescence and breakup 
appears to result in a larger relative decrease in the number concentrations at the large raindrop end of the spec-
trum than at the small to middle-sized ranges.

Although the general pattern of the Z-R distribution is very similar in all four groups, the coefficient and expo-
nent in the Z-R relationship, Dm and Nt vary. The comparison between the Z-R relationships shown in Figures 2c 
and 2d, as well as with other Z-R relationships from previous studies is illustrated in Figure 3. In order to compare 
with other hurricane RSD studies, Dm and Nt for reflectivity 40 dBZ are provided. Note a range from 39.5 to 
40.5  dBZ is used to represent 40  dBZ. Both mean and median Dm and Nt in each group are provided since 
sometimes the mean value can sometimes be misleading, especially for Nt if a few samples with extremely high 
values are included. Figure 2 shows that the convective regions for both H ≤ 3 km and H > 3 km have relatively 
smaller drops, but much higher number concentration compared to the stratiform regions. This is consistent with 
earlier studies (e.g., Rosenfeld & Ulbrich, 2003). Tokay et al. (2008) showed that the number concentration was 
700 𝐴𝐴 ±  100 drops m −3 and Dm was 1.67 𝐴𝐴 ±  0.3 mm, using JW disdrometer data from 7 tropical cyclones in the 
Atlantic basin. Both the mean and median Dm from our study is very close to that from Tokay et al. (2008, there-
after T2008). On the other hand, Nt is significantly higher than that in T2008, especially for the convective precip-
itation. This discrepancy might arise because the JW disdrometer underestimates the small raindrops (T2008), 
which both Z and Dm are not sensitive to.
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4.  Compare Z-R Relationships With Previous Studies
We next compare Z-R relationships from this study to selected Z-R relationships from the literature. Since our 
data source is closest to JW1982, four Z-R relationships from JW1982 are selected for comparison. Z-R rela-
tionships adopted by National Weather Service (NWS) for continental and tropical rainfall (Fulton et al., 1998) 
are also selected. Since all the data from JW1982 are sampled at or lower than 3-km altitude and NWS Z-R 
relationships are from a surface disdrometer, only Z-R relationships for convective and stratiform precipitation at 
H ≤ 3 km from Figure 2 are used here.

Figure 3 shows that the stratiform relationship from this study (orange line) is the leftmost curve, which implies 
that it has the largest raindrop sizes and the smallest number concentrations for a given Z among all the Z-R 
relationships shown here. In contrast, the convective relationship (blue line) has relatively higher concentration 
and smaller raindrop sizes compared to the stratiform relationship, consistent with Figure 2 and previous studies 
(e.g., Rosenfeld & Ulbrich, 2003). Comparing the Z-R for the convective precipitation from this study and the 
JW1982-composite reveals that these two Z-R relationships generate similar rainfall rate for Z < 48 dBZ. JW1982 
produces slightly higher rainfall for Z > 48 dBZ. Since the majority of samples from the JW1982 composite 
are convective, this result seems to imply the Z-R relationship for the convective precipitation in hurricanes is 
relatively robust. However, if this Z-R relationship applies to the entire hurricane, it will tend to overestimate the 
rainfall. As shown in Figure 2, the majority of the samples are from stratiform precipitation and the areal cover-
age of stratiform precipitation in hurricanes is much larger than the convective coverage. As noted in Marks and 
Houze (1987, thereafter MH1987), more than half of the rainfall in the inner core of Hurricane Alicia is from 
stratiform precipitation.

The comparison of JW1982-eyewall and JW1982-rainband reveals that the eyewall (rainband) is associated with 
smaller (larger) drops and larger (smaller) number concentration and consequently the estimated rainfall is higher 
for the eyewall for a given Z. When Z reaches 50 dBZ, the difference can be as much as 33 mm hr −1. Therefore, 
the heavy rainfall in hurricanes tends to occur in the eyewall (e.g., MH1987; JW1982; Black & Hallett, 2012). 
Earlier studies (e.g., Atlas et al., 1963; MH1987) characterized the eyewall as having large radial and small verti-
cal gradients of reflectivity associated with convective precipitation and the rainbands as having large vertical and 
small radial gradient of reflectivity associated with stratiform precipitation. If this statement holds for JW1982, 
then their results also indicate the smaller drops and larger number concentrations for convective precipitation. 
Yet JW1982 noted that their rainband samples are composed of both stratiform and convective rain in approxi-
mately a 1:1 ratio and provided a separate Z-R relationship for the stratiform in the rainband, which is shown by 
the brown line in Figure 3.

Figure 3.  (a) Z-R relationships for convection precipitation and stratiform precipitation for H ≤ 3 km from this study, JW1982-composite, JW1982-eyewall, 
JW1982-rainbands, JW1982-stratiform, NWS tropical rainfall and NWS continental rainfall. (b) The corresponding Z-R equations and computed rainfall (values within 
cells in mm h −1) as a function of reflectivity for the Z-R relationships shown in (a).
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The comparison of the Z-R relationship for the stratiform portion in the rainband and that for the entire rainband 
sample implies that the convective portion of the rainband is composed of even larger drops than that in the strat-
iform portion. One possible explanation for this discrepancy is that the cold rain process might play an impor-
tant role in the convective precipitation of the rainbands in JW1982. Hu et al. (2020) analyzed the WSR-88D 
dual-polarization radar data for Hurricane Harvey in 2017 and showed that the retrieved Dm for the ice particles 
associated with the convection in the rainbands is much larger than that in the eyewall. This indicates the presence 
of graupel, which will melt into raindrops when passing through the melting level and continue to grow through 
coalescence into bigger raindrops.

Marks (1985) and Hu et al. (2020) also showed that the bright band is more pronounced in the eyewall than in 
the rainbands and the echo top is higher in the rainbands. While this would appear to contradict the early view 
of hurricane eyewall and rainbands, the structure of the eyewalls and rainbands is ever-changing and what is 
captured by the observation depends on the stage of the eyewall and rainbands and where the observations 
are taken. As noted by MH1987 in their study of Hurricane Alicia, although most of the data showed distinct 
differences between the eyewall and rainbands, one exception appeared at landfall when vertical structure of the 
eyewall echoes was similar to those outside the eyewall.

The Z-R relationships for tropical rainfall and continental rainfall employed by NWS (Fulton et al., 1998) are also 
shown in Figure 3. The rainfall calculated from the Z-R relationship for tropical rainfall will significantly over-
estimate the rainfall in hurricanes, especially in the rainbands and stratiform region. Figure 2 shows large scatter 
in Z-R distribution and the scatter is closely related to drop sizes. Figure 3 indicates that the composite Z-R rela-
tionships for hurricanes do not change significantly. However, the large differences in the Z-R relationships from 
different regions of hurricanes suggest that in order to accurately estimate rainfall for a specific time at a specific 
location, the Z-R relationship needs to be improved beyond a power-law with constant coefficient and exponent. 
The scatter of Z-R relationship is closely related to Dm, which is proportional to differential radar reflectivity Zdr 
(Bringi et al., 2003) that can be measured by dual-polarized radar. This suggests that the Z-R relationship can be 
improved by including the information of Dm.

5.  Improve Z-R Relationship Using Random Reforest Regression Model
The application of machine learning and artificial intelligence in meteorology has grown rapidly in last 
decade (e.g., Gagne et al., 2017; McGovern et al., 2019). RandomForests (hereafter RFs) (Breiman, 2001) is 
a simple and powerful algorithm with a strong track record (Gagne et al., 2014; Herman & Schumacher, 2018). 
RFs learn an ensemble of decision trees, each of which is trained on a separate bootstrap resampled data 
set and using a different subset of the attributes. In this study, we use two attributes, radar reflectivity and 
mass-weighted-diameter, for the RFs input. The rainfall rate calculated from the observed RSDs is used 
as the output for the RFs. 70% of the entire 18,076 samples are used for the training data and 30% for the 
test data. Twenty trees are used for the RFs. Sensitivity tests show that using more trees (up to 100) does 
not degrade the performance of the trained model but slows down the training process. The input that only 
includes two attributes might not fully tap the potential of the RFs but the performance of RFs is signifi-
cantly better than a single decision tree regression model. Other machine learning models, such as support 
vector regression and k-nearest neighbors regression are also tested but the RFs outperform both of them, 
although only marginally.

Figure 4a shows the scatter plot of observed rainfall rate (abscissa) in the test data versus the rainfall rate 
estimated (ordinate) from the Z-R relationship, which is developed from the training data set (i.e., 70% of 
the entire 18,076 samples as used in RFs) through least square fitting. As we can see, such Z-R relation-
ship overestimates the low and middle rainfall rate (𝐴𝐴 ≤ 40 mm hr −1) and underestimates the high rainfall rate 
(>40 mm hr −1) for most of the samples in the test data. Figure 4b is similar to Figure 4a but the ordinate is 
rainfall rate predicted by the RFs. Figure  4b clearly demonstrates that including mass-weighted-diameter 
reduces uncertainties in the estimated rainfall. R 2 improves from 0.8 in Figures 4a to 0.9 in Figure 4b. Both 
the overestimation for the low and middle rainfall rate and underestimation for the high rainfall rate are alle-
viated. Yet the error for the high rainfall rate remains large. This issue arises due to the insufficient number of 
samples with high rainfall rate.
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6.  Conclusions and Discussion
RSDs collected by PIP from 17 flights through 6 hurricanes during hurricane field program in 2020 are used to 
study Z-R relationship. The results show that the Z-R relationship is highly scattered. The scatter increases with 
rainfall and reflectivity up to 48 dBZ or 25 mm hr −1, after which it decreases rapidly. The difference in the rainfall 
rate when reflectivity is 40 dBZ can be as large as 50 mm hr −1. Although a Z-R relationship from a composite 
might give a reasonable estimate for the overall accumulated rainfall, the rainfall estimate at a specific time and 
specific location can deviate significantly from what the composite Z-R relationship gives due to the scatter. The 
usage of RFs demonstrates that including the mass-weighted-diameter along with radar reflectivity improves the 
rainfall estimation significantly, especially for low and middle rainfall rate where majority of the samples are. 
Increasing the samples in high rainfall rate is expected to improve the rainfall estimation for high rainfall rate as 
machine learning models can only forecast the scenarios they have seen.

One caveat on the effort of estimating rainfall rate from radar reflectivity and mass-weighted-diameter is that 
there are innate uncertainties, which will not be eliminated even with the most sophisticated machine learning 
models and a large volume of samples. Using radar reflectivity and mass-weighted-diameter to estimate rainfall 
rate can be interpreted as using two moments of the RSDs to forecast another moment. Most of RSDs can be 
approximated as three-parameter gamma distributions, as shown in the literature (e.g., Ulbrich & Atlas, 1998). 
Three moments are required to fully determine the gamma distribution. When there are only two moments avail-
able, such as radar reflectivity and mass-weighted-mean-diameter, there are uncertainties in the gamma distribu-
tion as well as in any other moments calculated from the gamma distribution.

Data Availability Statement
The authors express thanks to NOAA/HRD Data Support for providing the microphysics observation data (https://
www.aoml.noaa.gov/hrd/data_sub/hurr2020.html).
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